Biomass Gasification for the Production of Fuels

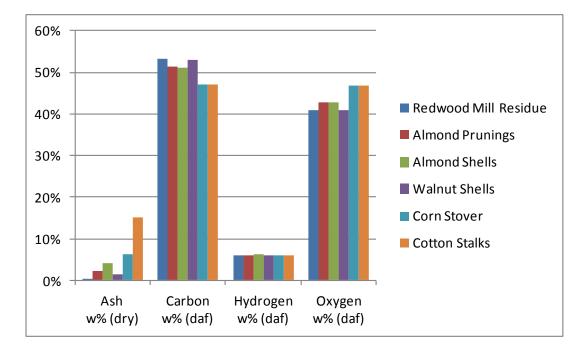
Reinhard Seiser

Matthew Summers

Biomass R&D Technical Advisory Committee Meeting

Main Difference between Biomass and Fossil Feedstocks (Crude Oil, Natural Gas, Coal)

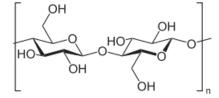
- Biomass contains oxygen (~40 w%).
- Biomass contains a different set of minerals (ash).
- Biomass does not occur in highly concentrated reserves but grows geographically distributed.
- Biomass appears as non-uniform solid, from a wide variety of plants (woody, grassy, stalks, leaves, shells, ...)
- · Biomass is renewable.

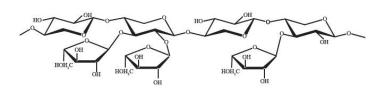


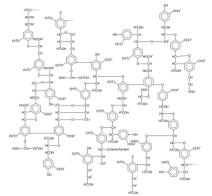
University of California, San Diego

Biomass Composition

Converted to moles: $(CH_{1.43}O_{0.65})_n$ (daf) or ~ $(CH_2O)_n$ (waf)

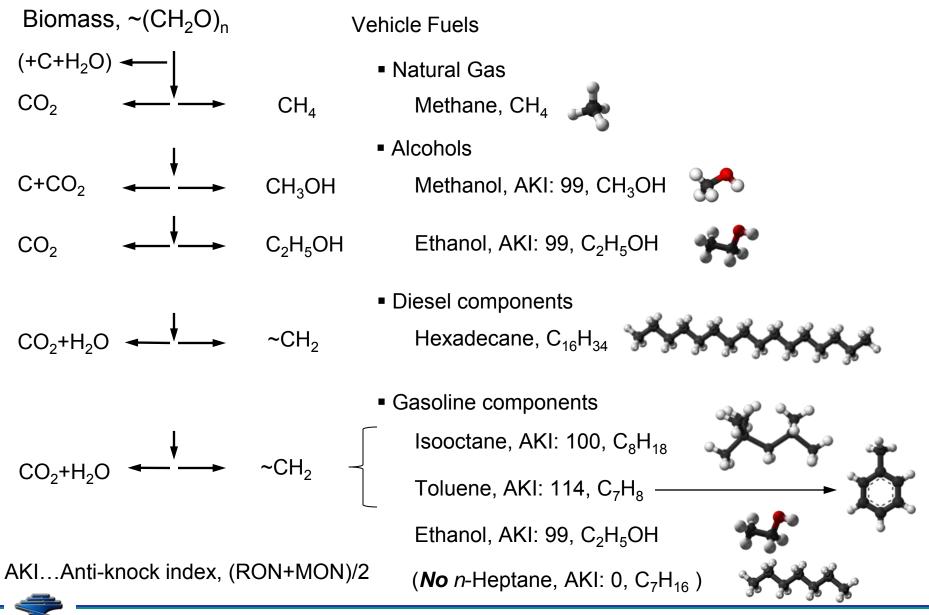

daf...dry and ash free waf...wet and ash free


Ash: Si, K, Na, Ca, Mg, Al, Fe, and other metals. Inorganics: N, S.


Cellulose $(C_6H_{10}O_5)_n$, 40-50%

Hemicellulose ($\sim C_5 H_8 O_4$)_n, 20-35%

Lignin (~C₃₁H₃₄O₁₁)_n, 15-35%



University of California, San Diego

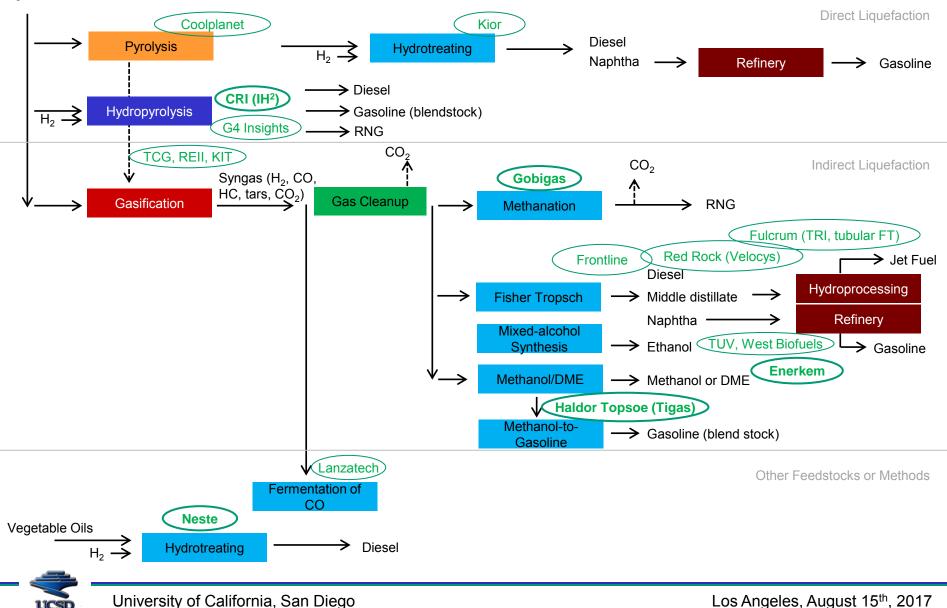
Biomass Conversion

University of California, San Diego

UCSD

Los Angeles, August 15th, 2017

Definition of Types of Fuels


- Co-processing feedstock (refinery-, crude-blendstocks) Examples: all types of hydrocarbons outside fuel specifications, hydrotreating of biomass/vegetable oils, biomass/coal.
- Fuel blendstocks (qualify as fuel components but are not widely used fuels themselves)
 Examples: alcohols, aromatics.
- Drop-in fuels (meet or exceed fuel specifications)
 Examples: Fischer-Tropsch diesel, renewable natural gas.
- Alternative fuels (outside main distribution networks) Examples: biodiesel, E85, methanol, DME

Conversion Technologies

Lignocellulosic Biomass

UCSD

Gasification – Gas Cleanup – Fuel Synthesis – Fuel Upgrading

Pros:

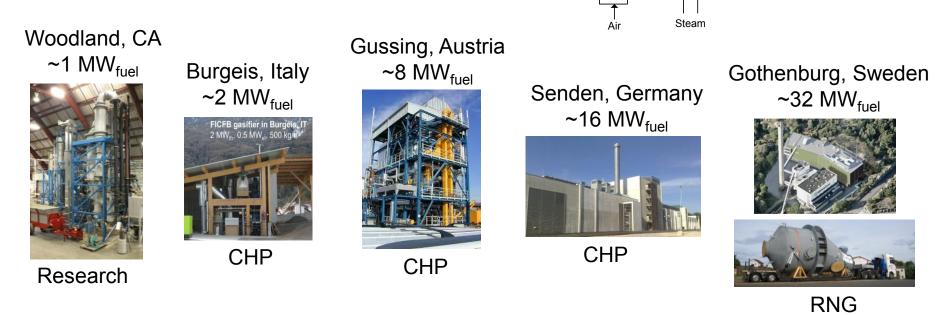
- High temperature relatively fast process
- Gasification creates a known set of gaseous species
- A variety of fuels and chemicals can be produced by fuel synthesis
- Low level of contaminants in final products

Cons:

- Many process steps less efficient, more costly
- Often relies on several catalysts costs and deactivation
- Large size feedstock availability and product distribution need to match

FICFB Gasifier: Converting Biomass to Producer Gas

Filter


(Ash

Regenerator

(Combustor)

Exhaust

- Fast Internally Circulating Fluidized Bed (FICFB)
- Fluidized bed using bed material such as Olivine sand
- Indirectly heated, air-blown, ambientpressure design.
- Low nitrogen producer-gas, acceptable tar levels.
- Cold-gas efficiency > 70%

CHP...Combined Heat and Power, RNG...Renewable Natural Gas

Los Angeles, August 15th, 2017

Scrubber

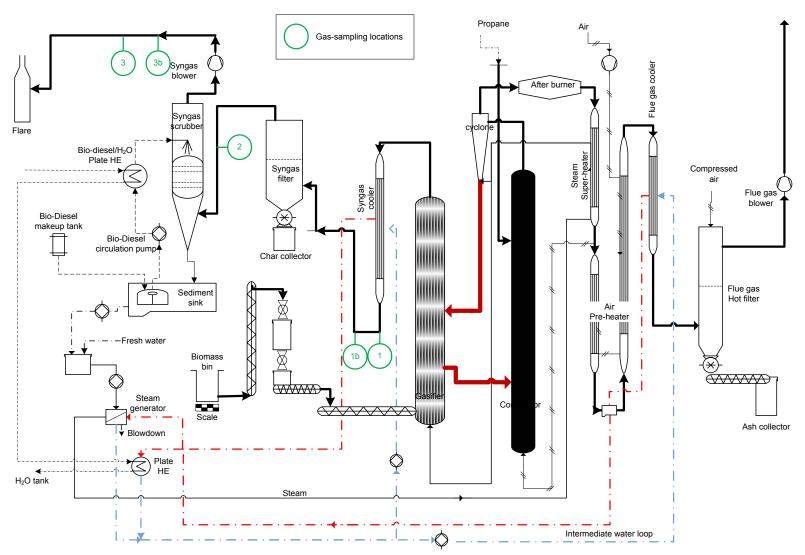
(Tar)

Product

Gas

Filter

(Char)

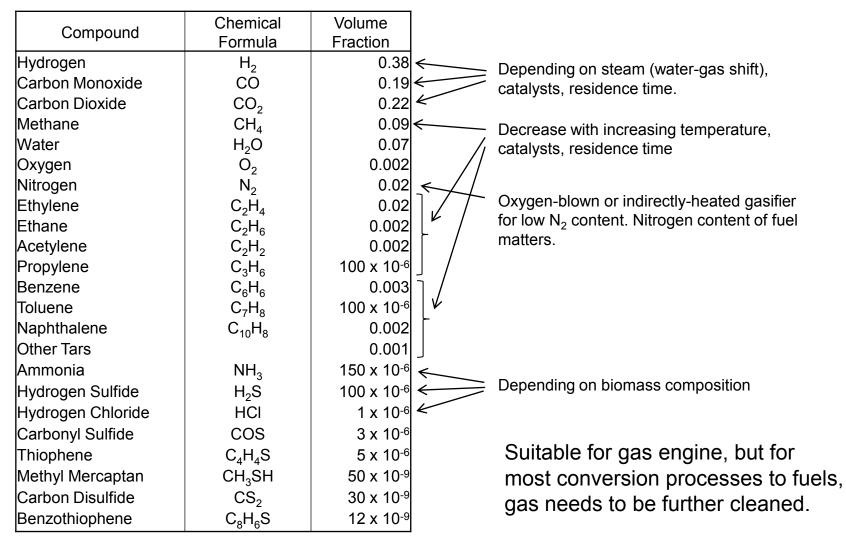

Gasifier

. Woodv Biomass

University of California, San Diego

FICFB Pilot Plant 1MW_{fuel}, 5 tons/day

Uses heat recovery for steam generation



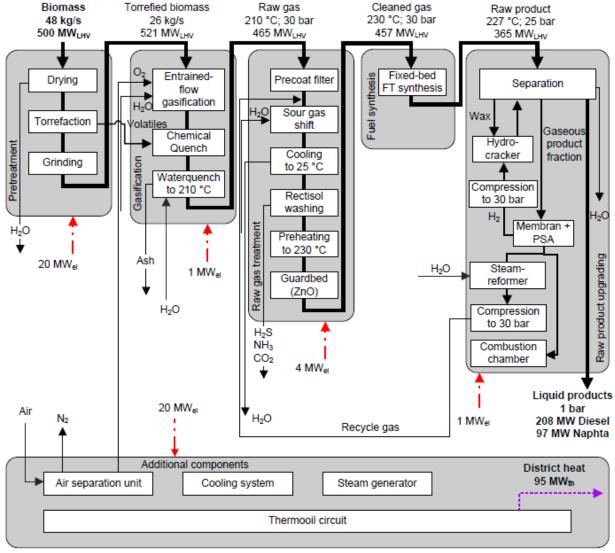
Los Angeles, August 15th, 2017

Typical Producer-Gas Composition

(after raw-gas cleanup and cool down, e.g. sampling point 3)

FICFB Gasifier in Comparison to other Gasification Technologies

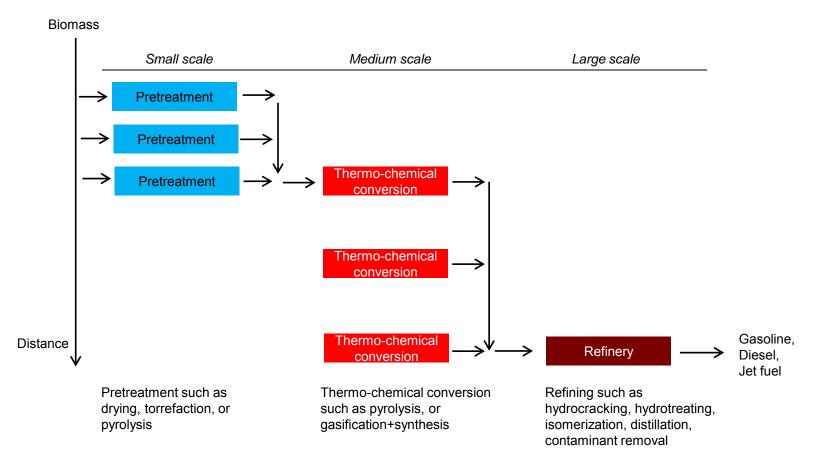
Pros:


- Process works Güssing plant operated 7000 hours/year for 15 years
- High efficiency to producer gas, few waste streams (char, tar, water internally recycled)
- High hydrogen and methane amount in producer gas
- No oxygen plant required
- Size matches biomass logistics (30-100 MWfuel, ~50 mile radius)

Cons:

- Many process steps demands on design, operators, and maintenance Problems with: refractory lining, feed systems, tars in heat exchangers
- Consumables bed material, biodiesel for scrubbing, Ca/K additives
- Not zero-emission exhaust from char combustor

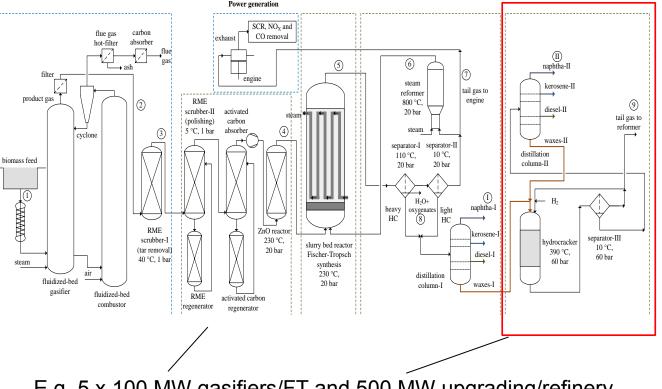
Fischer-Tropsch Synthesis – Larger Scale



Source: DBFZ report, 2009

Feedstock Barrier: Scale and Logistics

- Biomass is distributed and biomass facilities are small.
- Refineries are concentrated and large. Fuel specifications for gasoline and jet fuel are tight.
- Possibly combine process streams after they are being concentrated in energy:



Fischer-Tropsch Synthesis – Smaller Scale with Centralized Upgrading

Products per 100 MW biomass

	Lower	
	heating	
Description	value	
	[MW]	
Products from FT synthesis		
Naphtha	0.24	
Jet fuel	6.9	
Diesel	22.9	
Waxes (further hydroprocessed)	42.8	
Total (including waxes)	72.8	
Total (liquids)	30.0	
Hydrogen to hydrocracker	14.2	
Products from hydrocracking		
Naphtha	6.4	
Jet fuel	12.8	
Diesel	21.4	
Total (liquids)	40.7	
Tail-gas (not recycled)		
Combined products		
Naphtha	6.7	
Jet fuel	19.7	
Diesel	44.3	
Total final products	70.7	

E.g. 5 x 100 MW gasifiers/FT and 500 MW upgrading/refinery

Note:

Naphtha fraction needs to be upgraded in isomerization plant, Jet Fuel fraction is only blend stock

Technologies change with size (types of gasifier, types of gas cleanup,...)

Fischer-Tropsch Synthesis from Producer Gas to Drop-in Fuel (Diesel, Jet Fuel, Gasoline)

Pros:

- Best drop-in diesel fuel.
- Relatively high efficiency.
- Clean paraffinic production of chemicals.

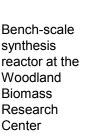
Cons:

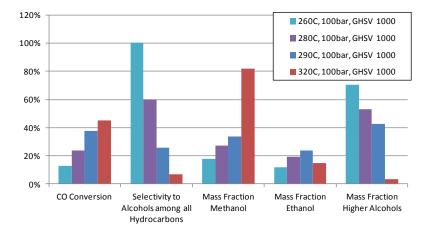
- Wide product distribution including naphtha and waxes.
- Gasoline and jet fuel fractions need to be upgraded in isomerization unit.
- Detailed gas cleanup necessary to protect catalyst.
- Large-scale installation needed or co-location with refinery.
- High-pressure equipment.

Technical Barrier: Catalyst Deactivation

Contaminant	Methanol Synthesis	FT Synthesis	Mixed Alcohol Synthesis	Fixed-/ Fluidized-bed Methanation
Particulate	< 0.02 mg/Nm3	n.d.		
(soot, dust char, ash)				
Tars (condensible)	< 0.1 mg/Nm3	< 10ppb		
Inhibitory compounds		< 1 ppm		< 1/1000ppm
(class 2-heteroatoms, BTX)				
Sulfur	< 1 mg/Nm3	< 10ppb	< 300ppm	< 10/10ppb
(H2S, COS)				
Nitrogen	< 0.1 mg/Nm3	< 20ppb		
(NH3, HCN)				
Alkali		< 10 ppb		
Halides (primarily HCl)	< 0.1 mg/Nm3	< 10 ppb		

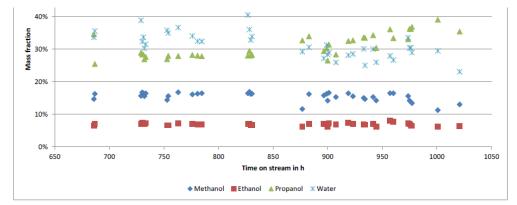
ppm...parts per million, ppb...parts per billion


Many thermo-chemical processes employ catalysts and are subject to catalyst deactivation. High demands on gas cleanup.



Mixed-Alcohol Synthesis

- MoS₂ based Catalyst from Albemarle. Similar to "Dow" Catalyst, NREL, Range Fuels.
- Allows for 100ppm of H_2S in the feed gas.
- No further producer-gas cleaning necessary.
- Pressures around 100bar are tested.
- Methanol and tail-gas recycling is investigated.
- Commercially, alcohols and water would be separated by distillation.
- Benchscale, laboratory-scale, and pilot-scale unit.
- Collaboration between UCSD, bioenergy2020+ (Austria), and West Biofuels.



Collaboration with bioenergy2020+ and Albemarle

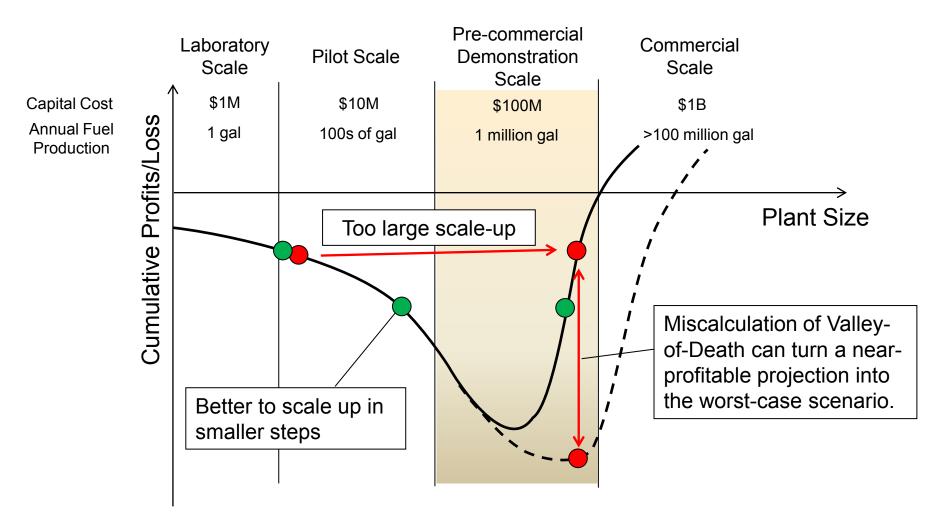
- Bench-scale reactor in Woodland, CA (UCSD). Testing of process conditions (5slpm feed gas, 8ml/hr alcohols in single pass)
- Laboratory-scale reactor in Güssing. Long-term testing of catalyst (50slpm feed gas)

Pilot-scale reactor in Woodland, CA (West Biofuels). Testing of thermal management (250slpm feed gas)

University of California, San Diego

Mixed-Alcohol Synthesis from Producer Gas to Fuel Blendstock (Gasoline)

Pros:


- Sulfur tolerant catalyst, virtually no gas-cleanup needed.
- Gasoline blendstock with minimal fuel upgrading.
- Allows for slightly smaller and decentralized plants near biomass source and fuel terminals.

Cons:

- Low conversion efficiency (multi-pass gas recycle necessary).
- High-pressure, H_2S requiring more expensive equipment.
- Mercaptan removal from liquid necessary.

Financial Barrier: Scale-up Risk

Range Fuels: 5 tons/day \rightarrow 125 tons/day (Phase1) ... failed Kior: 50 times from demonstration to commercial ... on hold

Research Center Topics

Guessing, Austria

- Commercial FICFB gasifier
- Electricity production in lean-burn SI-engine
- District heating
- Tar reforming technologies (2x)
- Fischer-Tropsch synthesis (2x)
- Mixed-Alcohol synthesis
- Hydrogen production
- Renewable natural gas production (3x)

Woodland, CA

- Fluidized-bed gasifiers (2x)
- Fixed-bed gasifiers (2x)
- Electricity production in SI-engine with aftertreatment (2x)
- Tar reforming
- Mixed-Alcohol synthesis (2x
- Renewable natural gas production
- Sulfur adsorbent testing

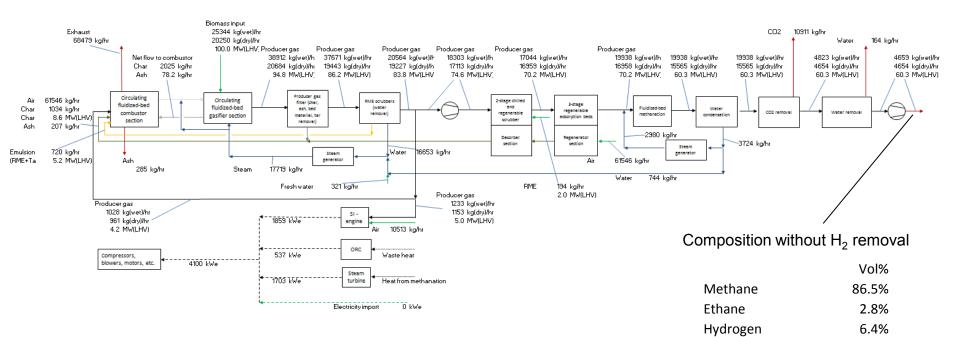
Fluidized-bed Methanation at Various Scales

PAUL SCHERRER INSTITUT

1-6 slpm 4

Our research unit

5-20 slpm



University of California, San Diego

Commercial Plant for Renewable Natural Gas

 $100 MW_{biomass}$ input, 58% efficiency to RNG

• Pipeline specifications (e.g. Rule 21) call for low hydrogen content (pipeline integrity), but hydrogen allowance may increase over time.

Nitrogen

Moisture

Carbon Dioxide

Carbon Monixide

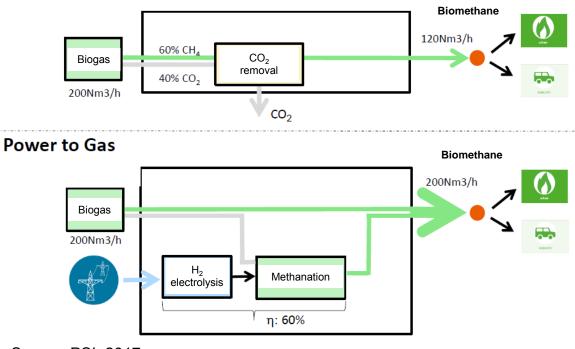
3.2%

0.7% 0.2%

0.1%

Methanation of Producer Gas to Renewable Natural Gas

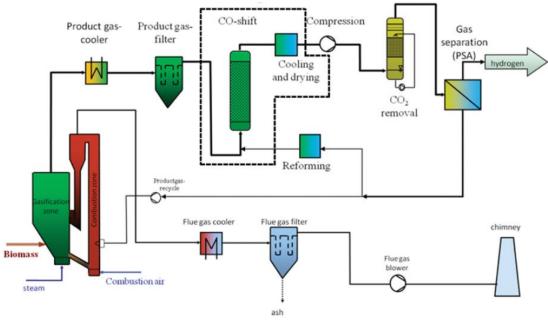
Pros:


- High-conversion with Ni-based catalyst (99.6%)
- High energy efficiency of overall process (60%)
- Methane and ethylene (conversion to ethane) in the producer gas are utilized
- Pipeline specifications can be met
- Minimal fuel upgrading needed

Cons:

- High demands on gas cleanup (sulfur compounds)
- Natural gas prices relatively low
- Expensive interconnection (pipeline injection)

Intermediate Step for Scaling up Fluidized-bed Methanation Technology


Conventional Biogas Purification

- Instead of removing CO₂ biogas, convert it to more methane.
- Uses hydrogen from electrolysis during times when electricity is cheap
- Increases biomethane output by ~60% for better economy of scale
- Smaller plant size than methanation of producer gas

Hydrogen Production from Biomass for use in Fuel Upgrading

Source: Loipersböck, 2017

- Makes direct use of hydrogen in producer gas
- High overall efficiency
- Replaces fossil natural gas otherwise used in steam reforming

Acknowledgments

bioenergy2020+

University of California, San Diego

Los Angeles, August 15th, 2017