

DOE Bioenergy Energy Technologies Office Update

Biomass R&D Technology Advisory Committee Q4 2018 Meeting

November 15, 2018

Bioenergy Technologies Office (BETO)

The Bioenergy Technologies Program focuses on early stage applied research and development (R&D) of transformative, sustainable bioenergy and bioproducts technologies that can support a growing bioeconomy and a more energy secure and prosperous nation.

(Dollars in Thousands)	FY 2017 Enacted	FY 2018 Enacted	FY 2019 Enacted
Advanced Algal Systems	30,000	30,000	32,000
Feedstock Supply and Logistics	20,000	29,000	30,000
Conversion Technologies	90,230	103,000	95,000
Advanced Development and Optimization (formerly Demonstration and Market		ĺ	ŕ
Transformation)	54,041	54,545	57,500
Strategic Analysis and Cross-cutting			
Sustainability/ TBD	10,729	5,000	11,500
Total	205,000	221,545	226,000

FY17 Biomass R&D Initiative Selections

Two DOE selections announced on May 9, 2018*

- University of Tennessee (\$1.4 million) will be developing an integrated biorefinery design that combines the production of liquid fuels and renewable chemicals to verify production of affordable cellulosic ethanol.
- Northwestern University (\$1.6 million) will be developing a rapid synthesis of next-generation biofuels and bioproducts from lignocellulosic biomass. The project will employ several strategies to reduce the timeframe of discovering biosynthetic pathways to optimize fuel and chemical production, including bottom-up engineering principles, computational models, and cell-free framework systems.

^{* &}lt;a href="https://www.energy.gov/eere/articles/department-energy-selects-3-million-research-projects-advance-biofuels-bioenergy-and">https://www.energy.gov/eere/articles/department-energy-selects-3-million-research-projects-advance-biofuels-bioenergy-and

FY18 Funding Opportunities

- BETO released 4 Funding Opportunities in May
 - Affordable and Sustainable Energy Crops
 - Efficient Carbon Utilization in Algal Systems
 - Process Development for Advanced Biofuels and Biopower
 - BioEnergy Engineering for Products Synthesis
- Peer Reviewed over 200 proposals
- Announced 36 selections with \$80 million in DOE Federal Share on September 4
 - Half of our selectees are new to BETO's portfolio as primary recipients
- https://www.energy.gov/articles/department-energyannounces-36-projects-bioenergy-research-and-development

Affordable and Sustainable Energy Crops

Goal: New varieties and improved management strategies to produce better, cheaper energy crops for energy production

- Improved yields
- Lower water, nutrient and energy requirements
- Marginal lands
- Three selections totaling \$14.6 million
 - 3 Growing Regions
 - Switchgrass, energy cane, biomass sorghum, miscanthus

Efficient Carbon Utilization in Algal Systems

Goal: Increase Algal Productivity by increasing uptake of carbon dioxide

- Topic 1. CO₂ Utilization Improvements taking emissions from industrial exhaust and feeding it into an algae system
 - Five selections totaling \$10.6 million
 - Strategies include: algal strain development, solvents and additives, purification technologies, physical transfer technologies
- Topic 2. Direct Air Capture earlier-stage R&D on directly capturing CO₂ from ambient air
 - Two selections totaling \$4.3 million
 - Strategies include: surface layer enzymes, solid adsorbents

BioEnergy Engineering for Products Synthesis

Goal: Increase efficiencies of converting feedstocks into desired fuels and products

- Topic 1. Chemical Catalysis for Bioenergy Consortium Industrial Partnerships

 developing novel, chemical catalysts to enhance thermocatalytic
 conversion strategies
 - One selection totaling \$1.9 million
 - Strategies include: multi-layered catalyst for waste biogas conversion to liquid fuel
- Topic 2. Agile BioFoundry Industrial Partnerships engineering biology to enhance biological conversion strategies
 - Three selections totaling \$5.3 million
 - Target products include: polyurethane foams, polymers, coatings
- Topic 3. Performance Advantaged Bioproducts materials that could be better made from biomass feedstocks
 - Four selections totaling \$7.5 million
 - Target products include: PET (#1 plastic), polymers, packaging materials

BioEnergy Engineering for Products Synthesis (continued)

- Topic 4. Biofuels and Bioproducts from Wet Organic Waste Streams new strategies to convert wet wastes
 - Three selections totaling \$5.6 million
 - Strategies include: producing short-chain fatty acids through modified anaerobic digestion; corn fiber to biodiesel and products; waste paper sludge to C_{12} - C_{14} hydrocarbons
- Topic 5. Rewiring Carbon Utilization converting waste carbon gases to products
 - Three selections totaling \$4.5 million
 - Target products include: ethylene glycol, isopropanol, propene
- Topic 6. Lignin Valorization increasing efficiency and lower cost of converting lignin to higher value products
 - Two selections totaling \$3.4 million
 - Target products include: thermoset polymers, spray insulation, carbon fiber

Process Development for Advanced Biofuels and Biopower

Goal: developing low-cost, efficient *integrated* systems for the production of biofuels, bioproducts and biopower

- Topic 1. Drop-in Renewable Jet Fuel Blendstocks
 - Four selections totaling \$10.7 million
 - Strategies include: fermentation & catalytic upgrading; hybrid process for upgrading biocrude; hydrothermal treatment of waste grease and catalytic upgrading; reforming biogas & Fischer-Tropsch
- Topic 2. Drop-in Renewable Diesel Fuel Blendstocks
 - Three selections totaling \$7.3 million
 - Strategies include: catalytic conversion of cellulosic ethanol; pyrolysis and hydroprocessing of biocrude; co-processing pyrolysis oils and vacuum gas oils in a Fluid Catalytic Cracker
- Topic 3. Biomass, Biosolids and Municipal Solid Waste to Energy
 - Three selections totaling \$5.0 million
 - Strategies include: Metal Organic Framework Catalysts for biogas clean-up;
 anaerobic membrane bioreactor with ammonia recovery; upgrading to bio-oils

Co-Optimization of Fuels and Engines (Co-Optima)

Goal: Develop bio-derived blendstocks for co-optimized mixing controlled compression ignition (MCCI) diesel engines for mediumand heavy-duty vehicles

- Five selections totaling \$8.0 million (in partnership with the Vehicle Technologies Office)
- Performance benefits include: enhance engine efficiency, reduce sooting propensity, increase cetane number, increase energy density, enhance cold weather behavior of the fuel, and help reduce cold start emissions of diesel engines

Small Business Innovation Research

FY19 Phase I, Release II SBIR Topics just announced on October 29

- \$200K awards in Phase I with possibility of \$1M in Phase II
- Letters of intent due 12/17
- Full proposals due 2/4
- More info: https://science.energy.gov/sbir/funding-opportunities/

Bioenergy topic areas:

1. Cell-Free Biochemical Platforms to Optimize Biomass Carbon Conversion Efficiency

- Utilizing biocatalysts (enzymes) to perform complicated biochemical reactions that offer benefits in comparison to industrial inorganic catalysts
- Interested in enzyme longevity, production hosts, and cofactor regeneration

2. Reshaping Plastic Design and Degradation for the Bioeconomy

- Targeting bio-derived plastics designed with end-of-life considerations in mind that can enable a circular carbon economy
- Exploring challenges in plastics degradation, such as crystallinity, feedstock contamination, and enzymatic deconstruction

3. Algae Engineering Incubator

- Open to all applications proposing technologies that facilitate the goals of the Advanced Algal Systems R&D subprogram through non-biological, engineering approaches
- Intentionally broad to bring in novel approaches

Appendix

FY17 Biomass R&D Initiative Selections

DOE selections announced on May 9, 2018:

https://www.energy.gov/eere/articles/department-energy-selects-3-million-research-projects-advance-biofuels-bioenergy-and

Selections	Approach/Objective	DOE (\$M)
University of Tennessee	Condensed Phase Catalysis Technology for Fuels and Carbon Products: UT will be developing an integrated biorefinery design that combines the production of liquid fuels and renewable chemicals to verify production of affordable cellulosic ethanol.	\$1.4
Northwestern University	Engineered reversal of the β-oxidation cycle in clostridia for the synthesis of fuels and chemicals: NU will be developing a rapid synthesis of next-generation biofuels and bioproducts from lignocellulosic biomass. The project will employ several strategies to reduce the timeframe of discovering biosynthetic pathways to optimize fuel and chemical production, including bottom-up engineering principles, computational models, and cell-free framework systems.	\$1.6

Affordable and Sustainable Energy Crops

Goal: Produce better, cheaper energy crops that can be used for energy production.

- Improved yields
- Lower water, nutrient and energy requirements
- Marginal lands

Selections	Approach/Objective	DOE (\$M)
University of Illinois at	Switchgrass/seasonal grasses on marginal lands in SD, NE,	\$5.0
Urbana-Champaign (IL)	IA, and IL. Machine learning techniques for performance,	
	best practices, and cost reductions.	
Texas A&M AgriLife	Advanced energy cane and biomass sorghum on	\$5.0
Research (TX)	agricultural and marginal lands in TX, LA, MS, GA, and FL.	
	Characterize seasonal dynamics; quantify environmental	
	impacts; and optimize production.	
North Carolina State	New hybrid varieties of miscanthus on marginal lands in	\$4.6
University (NC)	NC to increase biomass yields, improve soil, and enhance	
	crop production.	

Efficient Carbon Utilization in Algal Systems

Goal: Increase Algal Productivity by increase uptake of carbon dioxide

- Topic 1 Industrial waste gas streams
- Topic 2 Direct air capture technologies

Selections	Approach/Objective	DOE (\$M)
Topic 1: CO ₂ Utilization Improvements		
Colorado State University (CO)	Algae organism engineering, membrane design, and computer modeling to increase carbon utilization	\$2.1
Arizona State University (AZ)	Nitrogen-based solvent additive and novel nanobubble feeding system	\$2.5
Global Algae Innovations (CA)	Low cost, high efficiency system using bicarbonate regeneration and CO ₂ feed controls	\$2.5
Arizona State University (AZ)	Membrane technology to purify CO ₂ from an untreated industrial gas stream	\$2.0
Duke University (NC)	Marine algae engineering, calcium carbonate delivery system	\$1.5
Topic 2: Direct Air Capture Systems		
MicroBio Engineering, Inc. (CA)	Surface-layer enzymes to increase dissolved CO ₂ in algal ponds	\$2.3
Georgia Tech (GA)	Chemically-modified solid adsorbents for photobioreactors	\$2.0

BioEnergy Engineering for Products Synthesis

Goal: Increase efficiencies of converting feedstocks into desired fuels and products

Selections	Approach/Objective	DOE (\$M)	
Topic 1: Chemical Catalysis for Bioenergy Industrial Partnerships			
University of South Florida (FL)	Conversion of waste biogas to liquid fuel using a novel, multilayered catalyst	\$1.9	
Topic 2: Agile BioFoundry Indu	stry Partnership Initiative		
Lygos, Inc. (CA)	Conversion of cellulosic sugars to malonate, a chemical used for coatings through the use of synthetic biology/machine learning	\$ \$2.0	
ZymoChem (CA)	Conversion of cellulosic sugars to a super-absorbent polymer through metabolic pathways	\$1.3	
University of California, San Diego (CA)	Conversion of cellulosic sugars to polyurethane foams using synthetic biology and machine learning on algae	\$2.0	
Topic 3: Performance Advanta	ged Bioproducts		
Iowa State University (IA)	Systematic process development for identifying biomass-derived molecules for polymers/materials	\$2.5	
University of California, Berkeley (CA)	Produce infinitely recyclable packaging materials from biomass	\$2.0	
Georgia Tech (GA)	Produce biobased PET (#1 plastic)-replacement from cellulose and chitin	\$1.0	
Arzeda (WA)	Conversion of biomass to a novel polymer precursor (MBL) using a hybrid biological/chemical process	\$2.0	

BioEnergy Engineering for Products Synthesis (Continued)

Selections	Approach/Objective	DOE (\$M)
Topic 4: Biofuels and Bioprodu	ucts from Wet Organic Waste Streams	
Visolis (CA)	Altering the chemistry of anaerobic digestion to produce mevaloacetone as a fuel/chemical platform molecule	\$2.0
Xylome Corporation (WI)	Engineering microbes to convert waste corn fiber into lipids for upgrading to biodiesel/high-value products	\$1.1
North Carolina State University (NC)	Conversion of paper sludge waste (cellulosic) to C12-C14 hydrocarbons through furan intermediates	\$ \$2.5
Topic 5: Rewiring Carbon Utiliz	zation	
Montana State University (MT)	Electrocatalysis of CO ₂ to formate, followed by biological upgrading to ethylene glycol	\$1.5
LanzaTech, Inc. (IL)	Conversion of CO_2 to CO , followed by biological upgrading to isopropanol	\$1.5
Johns Hopkins University (MD)	Catalytic conversion of CO ₂ to methanol and formate to produce propene	\$1.5
Topic 6: Lignin Valorization		
Clemson University (SC)	Conversion of lignin to high-performance carbon fiber and spray insulation through solvent fractionation	\$1.8
Spero Energy, Inc. (CA)	Conversion of lignin to high-performance thermoset polymers (e.g., fiberglass, car parts) through catalysis	\$1.6

Process Development for Advanced Biofuels and Biopower

Goal: developing low-cost, efficient *integrated* systems for the production of biofuels, bioproducts and biopower

Selections	Approach/Objective	DOE (\$M)	
Topic 1: Drop-in Renewable Je	t Fuel Blendstocks		
Technology Holding LLC (UT)	Fermentation of cellulosic sugars to isoprene and catalytic upgrading to a high energy density jet fuel	\$2.5	
Washington State University (WA)	A hybrid process to upgrade bio-crude (from pyrolysis and hydrothermal liquefaction) to jet fuel	\$2.8	
Applied Research Associates (FL)	Hydrothermal cleanup of waste brown grease to make free fatty acids; then catalytically transform to hydrocarbons	\$2.4	
Gas Technology Institute (IL)	Reforming of CO/CO ₂ -rich biogas to syngas; fluidized bed Fischer Tröpsch conversion to jet fuel	\$3.0	
Topic 2: Drop-in Renewable D	Topic 2: Drop-in Renewable Diesel Fuel Blendstocks		
LanzaTech, Inc. (IL)	Improved catalytic conversion of cellulosic ethanol to diesel	\$2.5	
Research Triangle Institute (NC)	Catalytic biomass pyrolysis and hydroprocessing of bio-crude to diesel fuel	\$2.6	
West Biofuels Development, LLC (CA)	Co-processing pyrolysis bio-oil with vacuum gas oil in a Fluid Catalytic Cracker.	\$2.2	
Topic 3: Biomass, Biosolids, ar	Topic 3: Biomass, Biosolids, and Municipal Solid Waste to Energy		
Mosaic Materials (CA)	Metal organic framework catalysts to remove CO ₂ from biogas	\$1.4	
University of Illinois at	Novel anaerobic membrane bioreactor with ammonia recovery /	\$1.6	
Urbana-Champaign (IL)	electrolysis to produce biogas and H ₂ from wastewater		
Worcester Polytechnic Institute (MA)	Upgrading the biomass and food waste fractions of MSW to bio-oil, soil amendment, and purified lignin	\$2.0	

Co-Optimization of Fuels and Engines (Co-Optima)

Goal: Develop bio-derived blendstocks for co-optimized mixing controlled compression ignition (MCCI) diesel engines for medium- and heavy-duty vehicles

Selections	Approach/Objective	DOE (\$M)*
Auburn University (AL)	Bio-production and evaluation of renewable butyl acetate as a desirable bio-blendstock for diesel fuel	\$2.0
SUNY University at Stony Brook (NY)	Naphthenic biofuel-diesel blend for optimizing mixing controlled compression ignition combustion	\$1.5
University of Massachusetts Lowell (MA)	Renewable fuel additives from woody biomass	\$1.0
University of Michigan (MI)	Tailored Bio-blendstocks with Low Environmental Impact to Optimize MCCI Engines	\$2.0
University of Wisconsin- Madison (WI)	Mono-ether and alcohol bio-blendstocks to reduce the fuel penalty of mixing controlled compression ignition engine aftertreatment	\$1.5

^{*} Includes funding from the Vehicle Technologies Office