ICM Feedstock Lessons Learned

Brandon Emme
Cellulose Team Lead, Principal Scientist
ICM Technology Development

Coauthor: Chris Gerken
ICM’s Generation 2.0 Front-End Processes

Feedstock

Feedstock washing

Pretreatment

Flash

Patent-Pending
Feedstock Process Challenges

- Demonstration problems will Scale Up
- Unit operations with greatest difficulty:
 - Milling
 - Feedstock conveying
 - Pretreatment feeding
 - Solids/Liquids separation
 - Slurry pumping
Milling

- Moisture of product impacts issues
- 2” bale grinding
- Modified rotary air locks – lower impingement
- Transitions very important to keep swept

NARA – Northwest Advanced Renewables Alliance

VS

- Stationary plates not ideal
- Tub Ground (1 in–2 in length) Feedstock Delivered to Pilot
- Rat holing in storage silo
 - Self cleaning
- Variable moisture changes during milling
NARA – Northwest Advanced Renewables Alliance

Post milling

Post hydrolysis
Transportation

- Tramp/dirt in material
 - Hard on equipment
 - Ash buffering
- Microbial Contamination
- Plugging
 - Silos
 - Transport lines
 - Baghouse at filters
 - At slurry tank
 - Floaters (SG)
 - Sinkers (ES)
- At Pretreatment (PT)
 - Clogging at the slurry pump and check valve presented continual problems
 - Pretreatment pump tripped out multiple times due to thermal overload
- After PT
 - At flash line – briquettes, scaling
 - At flash valve
 - At slurry cooler – viscosity
Washing

• Necessary to reduce acid requirement for pretreatment

• Previous experiments show an increase in yield with feedstock washing with significant improvement on xylan conversions.

• Frees sugar from feedstock so not degraded in pretreatment
 • If recovered; not easy for non-collocated plant
 • Water used as cook water in starch plant providing benefit
 • Samples showed trace amounts of sugar loss during washing.

• Ion levels in the water fluctuated as a result of using recycled water as well as removing dirt and debris from the feedstock.

• Wash water solids showed less than 1% across the batches.
Feedstock [Non]-Agnosticism

- Feedstocks process differently
 - Switchgrass = floaters; difficult to wet thoroughly → poorer washing
 - Energy Sorghum = sinkers; difficult to maintain %TS into front-end
Water Sources and Recycling

<table>
<thead>
<tr>
<th>Gen2 process</th>
<th>Source</th>
<th>Process upset scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>pretreatment</td>
<td>syrup evaporator condensate (cook water)</td>
<td>ethanol if dropping alcohol in beer bottoms</td>
</tr>
<tr>
<td>feedstock washing</td>
<td>sugar evaporator condensate</td>
<td>sugar from foaming event</td>
</tr>
<tr>
<td>lignin cake washing</td>
<td>salt purge evaporator condensate</td>
<td>salts from foaming event (high pH)</td>
</tr>
<tr>
<td></td>
<td>methanator effluent (cook water)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2 scrubber bottoms (cook water)</td>
<td></td>
</tr>
</tbody>
</table>

Syrup Evaporators

Pilot Methanator
Remaining Needs

- **Storage**
 - Improved storage stability
 - FIFO feedstock supply
 - Avoid year to year carryover
 - Rotating harvests throughout year?
 - Can storage time be used to make it better?
 - pretreat/ensile
 - Destoning
 - washing

- **Harvesting**
 - Single pass for ag wastes
 - Wet field harvest solution?
 - Reduced tramp

- **Milling**
 - Pelleting, et al, to allow for silo storage and bulk transport instead of bales
 - If a blended feedstock, milling that gives higher consistency downstream

- **Washing/Wetting**
 - Remove ash from process without adding a huge water load to plant

- **Quality consistency; too difficult for a plant to have to be shifting pretreatment with varying input composition**
ICM Low Solids Approach

Low Solids
- Superior heat and chemical transfer
- Precise temperature control
- Low complexity equipment

Process robustness
- Low enzyme requirements/high yields

Disadvantages
- Contamination pressure
- Water and energy integration
- Larger equipment
- Boiler demand

Process Requirements
- S/L separation & sugar evaporation
- Co-location

Process Accommodates
- Feedstock washing
- Diversified co-products
Process Scale - Fouling

Energy Sorghum Switchgrass Cleaning Considerations
Process Scale

- Process areas range from highly organic to highly inorganic scale

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Batch ID</th>
<th>feedstock</th>
<th>ICP (ppm) Al</th>
<th>ICP (ppm) Ca</th>
<th>ICP (ppm) Mg</th>
<th>ICP (ppm) P</th>
<th>ICP (ppm) S</th>
<th>ICP (ppm) Si</th>
<th>ICP (ppm) Sr</th>
<th>ICP (ppm) Sulfur</th>
<th>% Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0062-001-0000</td>
<td>reactor - light colored</td>
<td>SG</td>
<td>48</td>
<td>59429</td>
<td>55</td>
<td>4</td>
<td>714</td>
<td>129</td>
<td>168</td>
<td>0</td>
<td>827</td>
</tr>
<tr>
<td>D0062-002-0000</td>
<td>reactor - dark colored</td>
<td>SG</td>
<td>75</td>
<td>84514</td>
<td>41</td>
<td>6</td>
<td>637</td>
<td>122</td>
<td>84</td>
<td>22</td>
<td>684</td>
</tr>
<tr>
<td>D0071-005-0000</td>
<td>sugar evaporator</td>
<td>ES</td>
<td>613</td>
<td>111488</td>
<td>943</td>
<td>1470</td>
<td>19759</td>
<td>2983</td>
<td>487</td>
<td>5501</td>
<td>1207</td>
</tr>
<tr>
<td>D0071-016-0000</td>
<td>reactor condensor</td>
<td>ES</td>
<td>2979</td>
<td>11384</td>
<td>2497</td>
<td>2153</td>
<td>1373</td>
<td>6521</td>
<td>0</td>
<td>402</td>
<td>86</td>
</tr>
<tr>
<td>D0071-017-0000</td>
<td>reactor - loose material</td>
<td>ES</td>
<td>65</td>
<td>31120</td>
<td>92</td>
<td>96</td>
<td>849</td>
<td>314</td>
<td>0</td>
<td>467</td>
<td>280</td>
</tr>
<tr>
<td>D0071-018-0000</td>
<td>reactor - steady bearing and baffles</td>
<td>ES</td>
<td>72</td>
<td>51285</td>
<td>74</td>
<td>68</td>
<td>1079</td>
<td>279</td>
<td>57</td>
<td>521</td>
<td>401</td>
</tr>
<tr>
<td>D0071-019-0000</td>
<td>reactor - baffles</td>
<td>ES</td>
<td>1133</td>
<td>46593</td>
<td>1221</td>
<td>385</td>
<td>873</td>
<td>1653</td>
<td>0</td>
<td>576</td>
<td>126</td>
</tr>
<tr>
<td>D0071-020-0000</td>
<td>reactor - acid quill</td>
<td>ES</td>
<td>69</td>
<td>44146</td>
<td>62</td>
<td>121</td>
<td>935</td>
<td>320</td>
<td>1</td>
<td>549</td>
<td>383</td>
</tr>
<tr>
<td>D0071-021-0000</td>
<td>sugar evaporator</td>
<td>ES</td>
<td>1227</td>
<td>105508</td>
<td>2928</td>
<td>2461</td>
<td>25899</td>
<td>11257</td>
<td>207</td>
<td>2254</td>
<td>947</td>
</tr>
</tbody>
</table>