Catalytic Processes in Biomass Gasification and Pyrolysis

David C. Dayton, Director of Biofuels
RTI International
Biomass Technical Advisory Committee Meeting
May 19, 2011
Established in 1958 as collaboration between state government, area universities, and business leaders

Mission: to improve the human condition by turning knowledge into practice

Revenues >$750MM with 13% average annual growth over the last 10 years.

>4,200 professionals in >40 countries

High-quality scientific staff with tremendous breadth

>130 different academic disciplines

Notable Achievements:
- Taxol® and Camptothecin™
- Cochlear ear implants
- Wind shear avoidance system
CET develops advanced energy technologies to address some of the world’s great energy challenges.

Leading-edge expertise in:
- Advanced materials development
 - Catalysts
 - Membranes
 - CO₂ solvents
- Process engineering & design
- Scale-up & field testing

Industries served by CET:
- Power
- Fuels & Chemicals
- Gas Processing
- Transportation
- Cement
Center for Energy Technology

Energy R&D within CET

Program Areas

Advanced Gasification
- Syngas cleanup/conditioning
- Substitute natural gas production
- Hydrogen production (Chemical Looping)

Biomass & Biofuels
- Biomass gasification
- Syngas cleanup/conditioning
- Pyrolysis to biocrude and conventional fuels

Fuels and Chemicals
- Syngas to fuels and chemicals
- Hydrocarbon desulfurization

Carbon Capture & Reuse
- Post-combustion CO₂ capture
- Pre-combustion CO₂ capture
- CO₂ reuse for fuels chemicals

Core Competencies
- Catalyst & Sorbent Development
- Membrane Development
- Reaction Engineering
- Process Engineering & Design
- Bench-scale & Prototype Testing
- Techno-Economic Evaluations

Feedstocks
- Biomass
- Coal
- NG
- HCs

(Catalytic) Pyrolysis
- Gasification
- Reforming
- Partial Oxidation
- Catalytic Upgrading

Gasification
- Cleanup and Conditioning
- CO₂ Capture
- CO₂ Utilization

Catalytic Conversion
- Fuels
- Chemicals

Power
Catalytic Processes in Biomass Gasification

- **Feed Processing & Handling**
- **Biomass Gasification**
- **Syngas Cleanup**
- **Syngas Conditioning**
- **Catalytic Fuel Synthesis**
- **Next Generation Biofuels**

In-bed catalysts
- Tar cracking
- Methanation (SNG)

Tar Conversion
- Tar cracking
- Tar reforming

Heteroatoms
- Sulfur sorbents
- NH$_3$ decomposition
- HCN removal
- HCl scrubbing

Metals capture
- Alkali, Hg, As

Water Gas Shift
- High temp shift
- Low temp shift
- Sour shift

Guard beds
- Sulfur sorbents
- NH$_3$ decomposition
- HCN removal
- HCl scrubbing
Syngas Utilization

Clean Syngas

H₂, CO, CO₂

Building Blocks for Fuels and Chemicals

Chemicals

- **Steam Iron Process**
 \[
 \text{Fe}_3\text{O}_4 + \text{CO} \rightarrow 3\text{FeO} + \text{CO}_2 \\
 3\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2
 \]
 Hydrogen

- **Methanol Synthesis**
 \[
 \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \\
 \text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \\
 \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2
 \]

- **Methanation**
 \[
 \text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O}
 \]
 Methane (SNG)

- **Mixed Alcohol Synthesis**
 \[
 2\text{nH}_2 + \text{nCO} \rightarrow \text{C}_n\text{H}_{2n+1}\text{OH} + (n-1)\text{H}_2\text{O}
 \]
 Ethanol and Gasoline Additive

- **Fischer-Tropsch Synthesis**
 \[
 2\text{nH}_2 + \text{nCO} \rightarrow (-\text{CH}_2-) + \text{nH}_2\text{O}
 \]
 Gasoline and Diesel

- **Dimethyl Ether Synthesis**
 \[
 2\text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}
 \]
 LPG and Diesel Fuel

Transportation Fuels

- **Steam Iron Process**
 \[
 \text{Fe}_3\text{O}_4 + \text{CO} \rightarrow 3\text{FeO} + \text{CO}_2 \\
 3\text{FeO} + \text{H}_2\text{O} \rightarrow \text{Fe}_3\text{O}_4 + \text{H}_2
 \]
 Hydrogen

- **Methanol Synthesis**
 \[
 \text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH} \\
 \text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O} \\
 \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2
 \]

- **Methanation**
 \[
 \text{CO} + 3\text{H}_2 \rightarrow \text{CH}_4 + \text{H}_2\text{O}
 \]
 Methane (SNG)

- **Mixed Alcohol Synthesis**
 \[
 2\text{nH}_2 + \text{nCO} \rightarrow \text{C}_n\text{H}_{2n+1}\text{OH} + (n-1)\text{H}_2\text{O}
 \]
 Ethanol and Gasoline Additive

- **Fischer-Tropsch Synthesis**
 \[
 2\text{nH}_2 + \text{nCO} \rightarrow (-\text{CH}_2-) + \text{nH}_2\text{O}
 \]
 Gasoline and Diesel

- **Dimethyl Ether Synthesis**
 \[
 2\text{CH}_3\text{OH} \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}
 \]
 LPG and Diesel Fuel
Tar Cracking Process Development at RTI

Technical Goals
- Reduce syngas cleanup process complexity
- Validate technology with biomass-derived syngas

Economic Target
- Reduce syngas cleanup/conditioning capital and operating costs to achieve biofuel production cost goals

Process Advantages
- Thermally efficient
- Cleaner and reduced-volume water product
- Process intensification (i.e., fewer unit operations)

Technical Targets
- Tar < 0.1 g/Nm³
- NH₃ < 10 ppm
- H₂S < 100 ppb
- HCl < 10 ppb
Technology Development Approach

Catalyst Development
- Productivity
- Attrition resistance
- Stability

Process Development
- Reaction kinetics
- Integration strategy

Catalyst Development
- Catalyst scale-up

Process Development
- Reactor scale-up
- Process modeling and design
- Detailed engineering
- Continuous operation
- Performance evaluation
- Pilot-plant testing
Tar cracking catalyst screening
- Use sorbent for sulfur removal
- FCC has promising tar cracking activity

Biomass Gasification Testing
- Successful operation of integrated biomass gasification system (gasifier, feeder, filter)
- Syngas quality (composition, HHV) sensitive to steam flow and O\textsubscript{2} addition

Tar cracking reactor design, fabrication, and installation complete
Integrated Testing just starting
What are the target bio-crude physical properties and the desired chemical composition that make it valuable as an intermediate for fuels and chemicals production?
Proposed Technology: A novel process that uses multi-functional catalysts to control biomass pyrolysis chemistry to produce a cost-effective refinery-compatible hydrocarbon intermediate.

Technology Development Approach

- **Catalyst Development**
 - Catalyst Synthesis
 - Catalyst Characterization: BET, TPR, Surface Analysis
 - Model Compound Testing
 - Bench-scale Catalytic Pyrolysis
 - Proof-of-concept
 - Identify key parameters for reactor design
 - Deoxygenation
 - Regeneration
 - Coke yields/Energy efficiency
 - Oxidation and reduction rates

- **Process Development**
 - Oxygen Rejection
 - Reactor design/prototypes
 - Real Biomass Testing
 - Yields: Gas, Bio-crude, Char/Coke
 - Hydrogen demand
 - Bio-crude Analysis and Quality
 - Process Modeling: Heat and Material Balances

- **Scale-up and Commercialization**

Focus on technology scale-up from the beginning.
Catalytic Microreactor Test System

Reaction Conditions:
- Temperature: 300-500°C
- Catalyst loading: 5 g
- Liquid feed rate: 0.02-0.05 ml/min.
- Carrier feed rate: 50 ml/min.
- LHSV: 0.1 h⁻¹
- GHSV: 1831 h⁻¹

- Convenient & effective approach to understanding complex reaction chemistries
- Enables fast & relevant screening of catalysts
- Helps develop understanding of deoxygenation pathways (mechanism)
- Provide insights for catalyst optimization and development of novel catalyst composition
Catalytic Biomass Pyrolysis Proof-of-Concept

- Catalytic pyrolysis studies in micro-fluidized bed reactor
- Rapid catalyst screening
- Biomass injected directly into fluidized catalyst bed
- Mass closures > 90%
- On-line gas analysis
- Liquid and solid product collection and analysis
RTI’S Bench-Scale Pyrolysis System

Biomass Pyrolysis – Vapor Phase Upgrading

Biomass feed rate: 100-350 g/h
Carrier gas: 2-20 SLPM N₂
Residence time: 0.3-5 s
Temperature: 350-900 °C
Mass closure - >95 wt%
 On-line microGC gas analysis
 Liquid yield: 50-70 wt%
 Char yield: 5-15 wt%

Bio-oil Collection
 Heat Exchanger (~13° C)
 Condensation Train (dry ice impingers)
 Electrostatic Precipitator

- Biomass feed rate: 100-350 g/h
- Carrier gas: 2-20 SLPM N₂
- Residence time: 0.3-5 s
- Temperature: 350-900 °C
- Mass closure - >95 wt%
 - On-line microGC gas analysis
 - Liquid yield: 50-70 wt%
 - Char yield: 5-15 wt%
- Bio-oil Collection
 - Heat Exchanger (~13° C)
 - Condensation Train (dry ice impingers)
 - Electrostatic Precipitator
Gas yields increase with temperature
- Hydrogen yields with catalyst are much higher than baseline (useful in process for regeneration)
- \(\text{CO}_2/\text{CO} \) increases with temperature

Coke deposits on the catalyst and at the entrance to the upgrading reactor

Bio-crude phase separates
- Water content increases with temperature (more cracking and dehydration)
- Light fraction also increases with temperature
- Water content of heavy fraction relatively constant

<table>
<thead>
<tr>
<th>Liquid Yield (g)</th>
<th>Baseline</th>
<th>400° C</th>
<th>450° C</th>
<th>500° C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>389 (22%)</td>
<td>16.8 (31%)</td>
<td>13.2 (42%)</td>
<td>21.3 (44%)</td>
</tr>
<tr>
<td>Light Fraction</td>
<td>na</td>
<td>8.2 (49%)</td>
<td>7.8 (62%)</td>
<td>12.7 (67%)</td>
</tr>
<tr>
<td>Heavy Fraction</td>
<td>na</td>
<td>8.6 (14%)</td>
<td>5.4 (12%)</td>
<td>8.6 (10%)</td>
</tr>
</tbody>
</table>
Acknowledgments

- RTI Team in CET
- Industrial and University Partners
- Funding from the U.S Department of Energy (Office of Biomass Programs and ARPA-E)

Turning Knowledge into Practice
Lab-Scale → Bench-Scale → Pilot-Scale → Demonstration-Scale
Some Perspectives on RTI

- We are one of the world’s leading research institutes
 - Exceptional depth and a continuously evolving knowledge base
 - Unique ability to create high-performing teams to solve the most complex problems

- We are an applied research organization
 - Little basic research or true consultancy
 - Dependant upon competitively awarded contracts

- We are an institute, not a university
 - 100% professional, dedicated staff
 - Experienced project managers, many from industry

- We are a non-profit organization
 - Very conducive to true “win-win” scenarios
 - Independent, objective work on complex scientific challenges
 - We have a pragmatic, flexible approach to IP

- We have a diverse client base
 - Extensive network of relationships with industrial, academic, and government clients.
 - When appropriate, we can provide access to mission oriented federal programs
Catalytic Processes in Biomass Gasification

Feed Processing & Handling -> Biomass Gasification -> Syngas Cleanup -> Syngas Conditioning -> Catalytic Fuel Synthesis -> Next Generation Biofuels

- In-bed catalysts
 - Tar cracking
 - Methanation (SNG)
- Tars Removal
 - Tar cracking
 - Tar reforming
- Heteroatoms
 - Sulfur sorbents
 - NH₃ decomposition
 - HCN removal
 - HCl scrubbing
- Metals capture
 - Hg, As, alkali

Syngas CO + H₂

- Fischer-Tropsch
- Water Gas Shift
 - High temp shift
 - Low temp shift
 - Sour shift
- Guard beds
 - Sulfur sorbents
 - NH₃ decomposition
 - HCN removal
 - HCl scrubbing

Ethanol

- Homologation with CO + H₂
 - CuCo-Based
 - MoS₂-Based
- Zeolite
- Al₂O₃/Zeolite/HPA

Methanol CH₃OH

- Oxosynthesis
 - Co, Rh
- CuZnO-Based
- CuCo-Based
- MoS₂-Based

- Formaldehyde
- Acetic Acid
- Methyl Acetate

Diesel Waxes
- Gasoline Olefins

Gasoline Olefins
- Diesel Waxes
- Gasoline Olefins

Aldehydes
- Alcohols
- Mixed Alcohols

DME CH₃OCH₃
- HPA/Zeolite
- Methyl Acetate