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ARPA-E Mission

Catalyze the development of transformational,
high-impact energy technologies

Promoting revolutionary Translating scientific

Reduce Energy-

advances !n fundamental Related Emissions dlscqvem::s into .
sciences technological innovations

Reduce Energy Improve
Imports Energy Efficiency

Ensure the U.S. maintains a lead in the development
and deployment of advanced technologies

Accelerating transformational technological advances in

areas that industry by itself is not likely to undertake
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Evolution of ARPA-E
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Creating New Learning Curves

COST / PERFORMANCE

TIME / SCALE
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What Makes an ARPA-E Project?

IMPACT

» High impact on ARPA-E mission areas
» Credible path to market
» Large commercial application

» Challenges what is possible
»  Disrupts existing learning curves
» Leaps beyond today’s technologies

BRIDGE

» Translates science into breakthrough technology
» Not researched or funded elsewhere
» Catalyzes new interest and investment

»  Comprised of best-in-class people
»  Cross-disciplinary skill sets
»  Translation oriented
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Technology Acceleration Model

Project Handoff

Transition Toward Market Adoption

Ongoing Technical Review g

EXECUTE Program Conception
(Idea/Vision)

ENVISION

PROGRAM DEVELOPMENT CYCLE
Workshop

Contract &
Negotiations
& Awards

ESTABLISH ENGAGE

Program Approval

Project Selection EVALUATE FOA Development
) e ™ & Issuance
Proposal Merit Review
Rebuttal of Proposals
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Measuring ARPA-E’s Success

MOVING TECHNOLOGY TOWARD MARKET

» Partnerships with Other Government Agencies

» Licensing/Acquisition by an Established Firm

» Licensing/Acquisition Resulting in a Spinoff

» Private-Sector Funding

» Growth of Existing Company (e.g., Organic Growth)

» Patents
» Publications

OPERATIONAL EXCELLENCE
» Expedited program development and project selection
» Aggressive performance metrics
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ARPA-E Resources

REGIONAL
RESOURCES

ARPA-E
UNIVERSITY

ACTIVE PROGRAM
MANAGEMENT

ANNUAL ENERGY
INNOVATION
SUMMIT

ARPA-E
ENGAGE

QrEpPA@© 7

CHAMNGING WHAT'S POSSIBLE



What is “Active Program Management”?

«Cooperative Agreements (vs. Grants)

. enable substantive involvement by the
ACTIVE PROGRAM «Contractually binding technical milestones
MANAGENENT are reported on quarterly and closely
observed

*Site visits to R&D location for all-hands
meetings twice a year

«T2M activities

*Contract modifications, plus-ups, and shut-
downs
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CHAMNGING WHAT'S POSSIBLE



OPEN 2012: 66 Projects, 24 States, 11 Areas

2 Advanced
Vehicles

2 Water
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3 Building
Efficiency
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9 Grid
Modernization
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Focused Programs

TRANSPORTATION
ENERGY TECHNOLOGIES

BEEST

Electrofuels

PETRO MOVE
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Biofuels are an attractive alternative to fossil-based liquid
fuels but production costs are a tough nut to crack
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Million Barrels of Oil Equivalent per day (MBOE/d)

Source: Booz Allen Hamilton analysis based on information
from IEA, DOE and interviews with super-majors
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New technologies are required to drive cost
reductions

» Feedstocks improvements (non-commodity “crops”)

» Increase energy density of bioenergy crops

» Process improvements

» New processes

Ya'aVae N
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Feedstock R&D(&D)

b

B B bio architecture lab»

al

crop harvest and & =y S
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Current pathways for liquid fuels from plants
are inefficient

@
- @
® @
Total Carbon Absorption Potential Total Incident Solar Energy
50 Mg-ha''y" 320 TJ-ha'y! Energy Loss

-200 Not Absorbed or Converted to Heat

N, L L

Carbon Loss -84 -95  Carbohydrate Biosynthesis

@ -25 @ 0 Photorespiration -18 @ 0 Photorespiration
@ -8 @ -16 Respiration -3.0 @ -6.0 Respiration
17 (3 |
-14 -26  Seasonality®
@ 77 b
-1.8 -3.8 Harvest
@ -0.92 @ -1.2  Purification®
() .
® 004 9 12 Processing’ Can plants be engineered to move
carbon to other polymers or
molecules besides lignocellulose?
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PETRO strategies to develop dedicated biofuel
crops
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Plants being developed under PETRO

C, Grasses Oilseed

I§ [LLINOIS

LA RS F L0 AT LR DRk MR TN

loblolly pine
(Sugarcane’ Sorghum) DONALD DANFORTH ( y p )
@ PLANT SCIENCE CENTER BERKELEY LAB

(tobacco)
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(Setaria=»sorghum) Q

Chromatin, Inc.
Sy UMASS

AW/ AMHERST (Guayule)

QChromatin, Inc.

(sorghum)

(Camelina)
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UCLA

(tobacco=>»Giant cane)

(Arabidopsis=>»Switchgrass/Camelina)
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Producing hydrocarbons in sweet sorghum

« Sweet sorghum will be engineered
to produce hydrocarbons instead of
sugar.

« The fuel molecules can readily be
solvent extracted from the crushed
biomass.

 The engineered sorghum is projected to generate
over 1000 gallons of fuel per acre

&Chr(}matin, |
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PETRO progress 1 yrin

» Launched work on a programmatic environmental impact
assessment to preemptively address potential impacts of
large scale deployment

» Preliminary results suggest improvements in photosynthesis
efficiency

» Achieved confident analytical methods for highly accurate
carbon flux measurements
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ARPA-E launched the “Electrofuels” program to address

current biofuel production inefficiencies

-

Photosynthesis ( Y,

I 1

Biomass “....i  Algae

1 1 1

EtOH Pyrolysis Biodiesel
Advanced
biofuels biofuels

Advanced oils
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Electrons/

Reducing equivalents

Chemical
Catalysis

!

Syngas
CH;OH
CH,
Advanced fuels?

Biological
Catalysis

!

Advanced
Fuels

~

Assimilate Reducing
Equivalents: other than
reduced carbon or products
from Photosystems | & 1l (ex.
direct current, H,, H,S, etc.)

j

Pathways for Carbon Fixation: \
reverse TCA, Calvin- Benson,
Wood-Ljungdahl,
Hydroxpropionate-
hydroxybutyrate, or newly
designed biochemical pathways/

denycrogensse

waoe

Fuel synthesis: metabolic N
engineering to direct carbon flux
to fuel products

"

Butanol

Alkanes

Etc. /
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Chemolithoautotrophs are capable of assimilating energy
directly from reduced inorganic compounds for CO, fixation

Chemoautotrophic Oxidation/
Energy Assimilation

2H, + O, —» 2H,0 AG” = -474 kJ

2Fe(ll) + 0.50, + 2H* — 2Fe(lll) + H,O AG® = -66 kJ (pH 7)
NH,* + 1.50, — NO, + 2H* +H,0 AG*’ = -275 kJ

Direct current

12HCOOH — C,H,,0 + 8CO, + 7H,0 AG® = -760 kJ

!

NADH/NADPH and ATP
+ CO,
l

CO, Fixation (the chemical reduction of
carbon to central metabolic intermediates)

Acetyl-CoA

Butanol
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Requires development of an
entirely new set of organisms for
biofuel production.

Energy
Assimilation

Carbon
Fixation

Fuel Synthesis



Numerous platform organisms, and energy pathways are
being developed by Electrofuels performers

( Energy Source \ ( CarbonFixation \ / Biofuels \

C t :
H.O —» Hurren Reductive acetyl-CoA Synthe5|s
2 2 (Wood-Ljungdahl)
Electricity +— Fes” — Fey' n-Butanol
—NO, — NH, Reductive citric acid
- CO, — HCOO (Arnon-Buchanan)
) Alkanes
Biomass - 3-Hydroxypropionate-
Natural Gas - H,
4-hydroxybutyrate
MSW - Isooctane
Qour(:rude H,S / Reductive pentose phosphate
(Calvin-Benson-Bassham) ]
Triterpene
Carbon Source 3-Hydroxypropionate
co, ——
HCOy ——— Biosynthetic pathways Iso-Butanol
HCO, -/ \ /
Chemolithoautotrophic Platform Organisms
Clostridium E. coli Acidithiobacillus Nitrosomonas
Geobacter Pyrococcus Ralstonia Desulfobulbus
Shewanella Synechocystis Rhodobacter Mixed communities
Yo a Ve W2 . i
| i. | )\ﬂ | — Source: Conrado, R.J., Haynes, C.A., Haendler, B.E., Toone, E.J.,"Electrofuels: A New Paradigm for
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Many projects target the engineering of native H,-consuming
bacteria, but there is good balance across the program

H, consuming bacteria Direct current/biocathodes
~  =Endogenous hydrogenases = “Electrotrophs” have been observed to
* Long history of H, fermentation and convert CO, to acetate with >90%
industrial unit operations are prevalent columbic efficiency
O opx .\ )UMASS
good chemistry. SES E 3 2 4 AMHERST
o 'MUSC
PENNSTATE The University of Georgia e Haivaid

~

1855 .
EE A\
Frrrereer ‘m

BE Electrochemical shuttles

I I I I I I = Can be relatively cost effective

= Can be electrochemically
regenerated at high efficiency

University

Electrochemically produced formate Qt? (COLUMBIA
* Formate is readily soluble in aqueous UNIVERSITY
media
= Is a source of both CO, and electrons Hvdrogen Sulfide. H,S

i bioworks » Can be recovered as a waste
gmkgo UCLA product from oil refineries, or

geological sources
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Electrochemically produced formate as a source of both
electrons and carbon dioxide for fuels

Electricity

Integrated Electromicrobial
Conversion of CO, to Higher Alcohols

Han Li,™? Paul H. Opgenorth,® David G. Wernick,* Steve Rogers,* Tung-Yun Wu,
Wendy Higashide,* Peter Malati, Yi-Xin Huo,* Kwang Myung Cho,* James C. Liao™**%*

sed ed with

d by the temal combustion
lable, for  of genes previously reported (4, 5) for isobutanol
" 2 Lo L 6
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o
us he in- elg
engines. We introduced the set  source of energy and d
This integrated o
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-
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electron

_~

electron

UCLA

Isobutanol
3-MB

®

H’

COz& Engineered Microbe

HCOGformate

~

In-situ electrolysis

Biofuels

Bacterial cells

J

reduction of CO,

Potential solution: New electrode materials, in situ production
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UCLA'’s technology links genetic engineering to
redirect amino acid biosynthesis...

o, ) o
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...with innovative electrochemical reactor

design for production of higher alcohols

N
o
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Formate production requires a large overpotential to force
acceptable kinetics...new materials could be a gamechanger

Plus up UCLAto
C02 + 2H* + 2e- — HCOOH bring on UNC for

electrode material
development

Suggested scope of work:

CO,
O—P(tBu),
\H
Ir‘l_|
O—P(tBU)Z
Electrode Eleciroda HCOO-
Electropolymerization to create active surfaces & Electrocatalysts

QrpPQ-@ 26
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Strategic vision has evolved as the program has matured and
new insights have come to light

Original Concept(s) NEW INSIGHT “Near-term” Concept(s)
(g.g. standalone next to Sourcing CO, (e.g. “co-gen like”)
wind farm)

Systems Level Analysis

Originally vision of CO, sourced from coal/NG electricity production
- Systems level analysis suggests this is an inefficient way to GTL/CTL
- Also not likely to qualify as a biofuel

Electricity & CO, H, & CO,
1. Biofuels production releases up to 1/3 of 1. GTL/XTL using Electrofuels
total carbon feedstock as CO, to convert CO,/H, into fuel
- e.g. Sugar-to-fuel fermentation 2. Opportunity to couple fuel
releases 2/6 carbon from every and ammonia production in
sugar molecule same reactor
- Extremely pure and concentrated CO,
stream

2. CO, from geothermal could enable
Iceland/Japan to become “oil” producers

J .'\‘I .' )

| ) =] |
~— il V% ﬂ \
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Certain feedstocks are advantaged and more
near term due to particular market opportunities

South African Company to Build U.S. Plant to Convert @ 0°

Gas to Liquid Fuels dTb
CH, \ Electricity
SMR : HZO C02 Fe3+/2+ :
: l Direct
: H, HCOOH  cyrrent E

Cll D|)\:"ﬂ° S 28
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ARPA-E conducted techno-economic analysis (TEA) to
compare Electrofuels to other biofuel/fuel approaches

Item

Electricity Feedstoc

Cost
Base Cost ($/GGE)
$0.04/kWh $2.15

Capital Cost

$2/yearly GGE $0.45

COz Feedstock
0, Co-product

Cost of Electrofuels (3/GGE)
$3 $4

Labor and Ovel 4

3
Materials and \
Water Feedsto
Total Cost

Item

Cellular Energy|
e- Consumed g
Delivered Voltd

Base Cost
$3.09/GGE

100% 50%)|
253 52
123 20

ARPA-E built a

preliminary model to
explore operating costs

QrpPGe
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Selected representative examples
where a process could be envisioned

Built general models to explore the
diversity of the program

Expanded and improved the model
to assess capital costs

Added precision around cost of
reducing equivalents
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ARPA-E and NREL specifically addressed hydrogen, formate,
and direct electrosynthesis in first iteration of the models

Hydrogen: H, > NADH, ATP + CO, > Calvin Benson Cycle

H, can be generated from H,O with High costs associated with
high efficiency improvements in gas mass transfer

Formate: CO, + 2H* + 2e- > HCOOH - CO, + NADH + H* - Calvin Benson

Formate is readily soluble and a source ' CO, reduction to formate requires large
of energy and CO, overpotential and energetic cost

Direct Current: Direct current + CO, - Wood-Ljungdahl

High columbic efficiency to acetate Low current density and high CapEx
cost

S 3
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TEA comparison of representative approaches
using electricity as feedstock

o |

L

a

o 1.0 A

i

p

N 0.5

o)

£

2 00 : :
Hydrogen Formate Direct

Current

» Apples-to-apples comparison using the same feedstock and
producing the same final fuel molecule

» Compares the cost of assimilating electrons and fixing carbon
dioxide to a final fuel

Ay ENTENY 2
q P leC
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Despite TRL disparity, the target cases show similar cost
of production, however feedstock dominate

o 157  mFeedstock Cost
=
o 1.0 -
i
p
N 0.5 A
o)
£
2 00
Hydrogen Formate Direct
Current

[

Medium TRL Low TRL

Technologies are needed to reduce the cost burden of feedstocks
and improve performance

P lal(C
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What technologies are needed to take
advantage of low cost feedstock?

Efficient use of Feedstocks
» Efficient carbon fixation pathways

» Fuel assimilation pathways with minimal ATP requirements

Access to Cheap Feedstocks

» Cheap capital that can be deployed with low capacity factors

» “Energy storage” by accumulating acetate or formate with
intermittent electricity supply for later conversion to fuel

» Small, modular deployment

A O WES B
q P leC
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Relative cost savings of switching to a more
efficient carbon fixation pathway

1.5 -

1.0 -

0.5 -

Normalized Fuel Price

0.0

Hydrogen Formate

N Vg \

| ) N C
P e (C
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By addressing these, we can go after niche
opportunities in early deployment scenarios
» H,/CO/CO, energy source

— Ethanol refinery bolt-on
— Geographic niches with resource availability

» TX = cheap wind e- & EOR CO,
* ND = natural gas processing with wind
* Iceland & Japan = geothermal for e- and CO,

> Electricity as energy source

— Intermittent renewable electricity and opportunity for energy storage
as formate/acetate

A O WES B
q P leC
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ARPA-E is currently evaluating next best
investment opportunities for Efuels technologies

» Held a program review and workshop in Houston on
Dec. 10, 2012

> Need to a different set of expertise

» Emergence of a need for emphasis on
electrochemistry

» Techno-economics

» Reactor technologies

YT e 2
q P leC
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Bio-conversion of methane to liquid fuels

workshop, Dec. 5, 2012

Workshop Participants

® Industry
m Academia

U.S.G. &
Nat. Labs

» 37 individuals participated in the workshop
representing Industry, Academia, and the
U.S.G. in roughly equal numbers.

» Representative expertise included
methanogenesis, aerobic methanotrophs,
anaerobic & C1 metabolism,
electrosynthesis, synthetic biology &
protein engineering, and industrial
processing.

Qi D|J\i° S
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vietnane
Natural Gas Emissions

Methane activation

ACtlIVe Intermeaiate
Methyl-H4MPT
Fuel

Methanol Others

synthesis

)esSl B - 1CT
vesigner Product

Molecule Pathway

Process development

1

Froces
Integration Intensification
Methane activation and fuel synthesis
flow-diagram presented to workshop
participants for additional context.
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Workshop output and teaming list
announcement

» Workshop output

— http://arpa-e.energy.qov/?q=arpa-e-events/biological-
technologies-methane-liquid-fuels

» Teaming List RFI Announcement
— Targets three Focus Areas:
- Efficient methane activation to a biological intermediate
* Biological carbon-carbon bond formation & fuel synthesis
* Biological process engineering and intensification
— https://arpa-e-foa.energy.gov/

» Anticipate Funding Opportunity Announcement in March

Qi D|J>\...i“'e 38
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http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
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http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
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http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
http://arpa-e.energy.gov/?q=arpa-e-events/biological-technologies-methane-liquid-fuels
https://arpa-e-foa.energy.gov/
https://arpa-e-foa.energy.gov/
https://arpa-e-foa.energy.gov/
https://arpa-e-foa.energy.gov/
https://arpa-e-foa.energy.gov/
https://arpa-e-foa.energy.gov/

: \il lj‘li energy innovation summit

www.arpae-summit.com

Feb. 25-27, 2013 | Washington, D.C.



U.S. DEPARTMENT OF

'ENERGY

PETRO:

Jonathan Burbaum, Program Director
Dave Lee, SETA
Jonathan.burbaum”at’hq.doe.gov
David.lee2”at’hg.doe.gov

Robert Conrado,
Senior Fellow
Robert.conrado”at’hg.doe.qgov

Electrofuels and BioMTL.:

Ramon Gonzalez, Program Director
Ramon.gonzalez"at’hqg.doe.gov
Chad.haynes”at’hqg.doe.gov
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